Synthesis and X-Ray Crystal Structures of the First Tetrahedral Osmium(IV) Compounds, Tetrakis(cyclohexyl)osmium(IV) and Tetrakis(*o*-methylphenyl)osmium(IV)

Robert P. Tooze,^a Pericles Stavropoulos,^a Majid Motevalli,^b Michael B. Hursthouse,^b and Geoffrey Wilkinson^a

^a Chemistry Department, Imperial College, London SW7 2AY, U.K.

^b Chemistry Department, Queen Mary College, London E1 4NS, U.K.

The compounds OsR_4 , R = cyclohexyl, *o*-methylphenyl, have been isolated by the interaction of the appropriate Grignard reagents with $Os_2(O_2CMe)_4Cl_2$ and OsO_4 respectively; both complexes have been characterized by *X*-ray crystallography.

Although neutral, homoleptic tetra-alkyls and aryls for early transition metals (Ti, Zr, Hf, V, Cr)¹ and also for Mo² and W³ have been isolated at ambient, or more usually at low temperatures, and some of them crystallographically characterized $[M(CH_2Ph)_4, M = Ti, {}^4 Zr, {}^5 Hf, {}^4 V(2,4,6-Me_3C_6H_2)_4, {}^6 Cr(CH_2CMe_2Ph)_4, {}^7 Cr(CPh=CMe_2)_4 {}^8]$, no analogous compounds for the platinum group metals have been obtained.

OsR₄
(1) R = c-C₆H₁₁
(2) R =
$$o$$
-MeC₆H₄

We now report the synthesis of osmium compounds *via* preparative routes somewhat different from those utilized to obtain the other tetra-alkyls where metal halides or alkoxides have been almost exclusively used. The cyclohexyl Os(c- C_6H_{11})₄ (c = cyclo) (1) has been obtained by interaction of the Grignard reagent with the binuclear Os^{III} acetate Os₂(μ -O₂CMe)₄Cl₂, probably *via* a disproportionation reaction, whereas Os(*o*-MeC₆H₄)₄ (2) has been prepared by reduction of OsO₄ with the Grignard reagent. Previously Os₂(O₂C-Me)₄Cl₂ has only been partially alkylated to give Os₂(μ -O₂CMe)₂R₄ ⁹ (R = CH₂SiMe₃, CH₂Bu^t), while OsO₄ has been used directly in alkylations only in the two cases of OsO(CH₂SiMe₃)₄ ¹⁰ and OsO₂(2,4,6-Me₃C₆H₂)₂ ¹¹ and indirectly in synthesis of nitrido-osmium alkyls.¹²

Both these red-purple petroleum-soluble and air-stable crystalline compounds (1) and (2) have been fully charac-

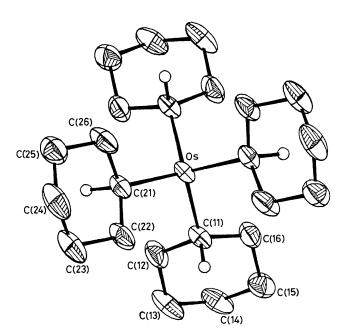


Figure 1. The structure of $Os(c-C_6H_{11})_4$, (1).

terized by elemental analysis, ¹H and ¹³C n.m.r. and i.r. spectroscopy, and X-ray crystallography.[†] Of particular interest is their thermal stability, especially of the cyclohexyl complex which might have been expected to be susceptible to β -hydrogen elimination; cyclohexyl complexes are relatively scarce¹³ and the only analogue Ti(c-C₆H₁₁)₄¹⁴ is unstable above -30 °C. To our knowledge the *o*-MeC₆H₄ ligand has not been previously used for the preparation of homoleptic tetra-aryls although well defined M(2,4,6-Me₃C₆H₂)₄ compounds (M = Ti,¹⁵ V,¹⁶ Cr,¹⁷ Mo²) have

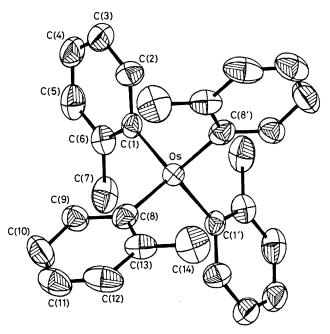


Figure 2. The structure of $Os(o-MeC_6H_4)_4$, (2).

† Crystal data. For (1) C₂₄H₄₄Os, M = 522.81, monoclinic, a = 17.636(3), b = 8.528(2), c = 17.507(3) Å, $\beta = 118.41(3)^\circ$, U = 2315.8 Å³, space group C2/c, Z = 4, $D_c = 1.50$ g cm⁻³, λ (Mo- K_{α}) = 0.71069 Å, $\mu = 34.35$ cm⁻¹. For (2) C₂₈H₂₈Os, M = 554.73, orthorhombic, a = 16.321(3), b = 8.083(2), c = 8.510(2) Å, U = 1122.7 Å³, space group Pba2, Z = 2, $D_c = 1.64$ g cm⁻³, λ (Mo- K_{α}) = 0.71069 Å, $\mu = 54.48$ cm⁻¹. Data for both compounds were recorded using a CAD4 diffractometer with monochromated Mo- K_{α} radiation and an ω -2 θ scan technique and corrected for absorptions. The structures were solved by routine heavy atom procedures and refined by least-squares. For (1), R = 0.029 for 1718 observed [$I > 1.5\sigma I$] out of 2037 unique measured data (202 parameters refined); for (2), R = 0.0193 for 855/1058 unique observed data (180 parameters refined). The atomic coordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication. received considerable attention mainly due to their thermal stability and chemical inertness as opposed to the well known instability of phenyl compounds *via* reductive elimination¹⁸ and *ortho*-hydrogen abstraction^{1,19} decomposition pathways.

The compounds are the first examples of tetrahedrally co-ordinated Os^{IV}, d⁴; only octahedral and distorted octahedral Os^{IV} have been observed previously. Both compounds have similar structures (Figures 1 and 2); in each case the molecule has crystallographic C2 symmetry and the coordination geometry is slightly flattened tetrahedral, with C-Os-C angles of 106.1(4)—117.1(8)° for the aryl (2) and 105.3(2)—117.1(2)° for the alkyl (1). The Os-C distances in (2) are slightly smaller than those in (1) [1.98(1), 2.02(1) vs. 2.026(6), 2.030(3)Å], which may correlate with the expected differences in covalent radii for sp² and sp³ carbons.

Received, 4th June 1985; Com. 772

References

- 1 R. R. Schrock and G. W. Parshall, Chem. Rev., 1976, 76, 243.
- 2 K-H. Thiele, R. Opitz, and E. Kohler, Z. Anorg. Allg. Chem., 1977, 435, 45; W. Seidel and I. Burger, J. Organomet. Chem., 1979, 171, C45; *ibid.*, 1979, 177, C19; R. Kirmse and W. Seidel, Z. Anorg. Allg. Chem., 1982, 490, 19; C. Cauletti, R. Zanoni, and W. Seidel, *ibid.*, 1983, 495, 143.
- 3 K-H. Thiele, A. Russek, R. Opitz, B. Mohai, and W. Bruser, Z. Anorg. Allg. Chem., 1975, 412, 11; L. Bencze, K-H. Thiele, and V. Marquardt, Recl. Trav. Chim. Pays-Bas, 1977, 96, M8; R. Opitz, L. Bencze, L. Marco, and K-H. Thiele, J. Organomet. Chem., 1974, 71, C3.

- 4 G. R. Davies, J. A. J. Jarvis, and B. T. Killbourne, J. Chem. Soc., Chem. Commun., 1971, 1511; I. W. Bassi, G. Allegra, R. Scordamaglia, and G. Chioccola, J. Am. Chem. Soc., 1971, 93, 3787.
- 5 G. R. Davies, J. A. J. Jarvis, B. T. Killbourn, and A. J. P. Pioli, J. Chem. Soc., Chem. Commun., 1971, 677.
- 6 T. Glowiak, R. Grobelny, B. Jezowska-Trzebiatowska, G. Kreisel, W. Seidel, and E. Uhlig, *J. Organomet. Chem.*, 1978, **155**, 39.
- 7 V. Gramlich and K. Pfefferkorn, J. Organomet. Chem., 1973, 61, 247.
- 8 C. J. Cardin, D. J. Cardin, J. M. Kelly, R. J. Norton, A. Roy, B. J. Hathaway, and T. J. King, J. Chem. Soc., Dalton Trans., 1983, 671.
- 9 R. P. Tooze, M. Motevalli, M. B. Hursthouse, and G. Wilkinson, J. Chem. Soc., Chem. Commun., 1984, 799.
- 10 A. S. Alves, D. S. Moore, R. A. Andersen, and G. Wilkinson, Polyhedron, 1982, 1, 83.
- 11 P. Stavropoulos, T. Behling, P. G. Edwards, G. Wilkinson, M. Motevalli, and M. B. Hursthouse, unpublished results.
- 12 P. A. Belmonte and Z-Y. Own, J. Am. Chem. Soc., 1984, 106, 7493.
- 13 G. S. Girolami, C. G. Howard, G. Wilkinson, H. M. Dawes, M. Thornton-Pett, M. Motevalli, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1985, 921 and references therein.
- 14 J. B. Weber, J. Porret, and A. Jacot-Guillarmod, Helv. Chim. Acta, 1978, 61, 2949.
- 15 W. Seidel and I. Burger, Z. Chem., 1977, 17, 185.
- 16 W. Seidel and G. Kreisel, Z. Chem., 1976, 16, 115; R. Kirmse, J. Stach, and G. Kreisel, J. Organomet. Chem., 1981, 210, 73.
- 17 W. Seidel and I. Burger, Z. Anorg. Allg. Chem., 1976, 426, 155. 18 F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,'
- 4th edition, Wiley-Interscience, New York, 1980, p. 1138.
- 19 P. R. Sharp, D. Astruc, and R. R. Schrock, J. Organomet. Chem., 1979, 182, 477.